津波襲来時における大型漂流物の 長大橋衝突シミュレーション

馬越 一也1・葛 漢彬2・野中 哲也3・原田 隆典4・村上 啓介5

¹正会員 名城大学大学院理工学研究科 社会環境デザイン工学専攻(〒468-8502名古屋市天白区塩釜口1-501) E-mail: magoshi@sean.co.jp

²正会員 名城大学教授 理工学部建設システム工学科 (〒468-8502名古屋市天白区塩釜口1-501) E-mail: gehanbin@meijo-u.ac.jp

³正会員 株式会社地震工学研究開発センター (〒889-2192宮崎市学園木花台西1-1) E-mail: nonaka@eerc.co.jp

⁴正会員 宮崎大学教授 工学部土木環境工学科 (〒889-2192宮崎市学園木花台西1-1) E-mail: harada@civil.miyazaki-u.ac.jp

⁵正会員 宮崎大学准教授 工学部土木環境工学科 (〒889-2192宮崎市学園木花台西1-1) E-mail: keisuke@cc.miyazaki-u.ac.jp

東北地方太平洋沖地震において、津波襲来時にコンテナや船舶が漂流して、構造物が被災した二次被害 は甚大なものであった.漂流物には大型船舶も含まれていたことから、大型タンカー等が多く入港する日 本の主要港湾において、地震津波の漂流物による被害の拡大化が懸念される.そこで本研究では、津波に よって漂流した大型船舶が、湾岸線の長大橋へ衝突したことを想定して、衝突時の挙動および構造物への 被害を明らかにするために、津波伝播解析と、精緻な橋梁全体系解析モデルによる衝突時の動的弾塑性有 限変位解析を用いた数値シミュレーションを実施した.衝突力の算定においては近似的な解析手法の提案 をし、対象橋梁の衝突部材が耐えうる最大の漂流物が衝突した場合の挙動について結果を示している.

Key Words : simulation of tsunami, drifting bodies, whole bridge system, impact analysis, geometrically and materially nonlinear analysis

1. はじめに

日本国内において観測史上最大といわれる平成23年3 月11日の東北地方太平洋沖地震では、大規模な津波が発 生し、東日本一帯の広い範囲の構造物に対して壊滅的な 被害をもたらした.津波が直接的な原因と考えられる海 岸施設の破壊や橋梁流出、建物浸水といった被害の他に、 津波が船舶やコンテナを押し流し、漂流物となって構造 物を損傷もしくは破壊した二次的な被害も甚大であった. 気仙沼市では、漂流物に300重量トンクラスの大型漁船 も含まれており、岸壁係留位置から500m以上もの距離 を住居などの建物や施設を破壊しながら漂流した報告¹⁾ がある.また、平成23年10月28日に制定された「津波防 災地域づくりに関する法律(平成二十三年法律第百二十 三号)」において津波防護施設は、津波の水圧および波 力ならびに地震の発生だけでなく、漂流物の衝突に対し ても安全な構造にするよう定められていることからも、 構造物に対する漂流物衝突は重要な要素と考えられる. さらに、大型タンカー等が多く入港する日本の主要港湾 においては、地震津波の漂流物による被害の拡大化が懸 念される.このような背景より、本論文では、津波によ って漂流した大型船舶が、湾岸線の長大橋へ衝突すると いった、偶発作用における挙動および構造物への被害を 数値シミュレーションによって定量的に明らかにし、そ の一連の解析手法を提案する.

対象橋梁は図-1に示す通り,橋長1,000 m(250+500+250) の長大斜張橋であり,大型船舶が入港する大阪湾東側湾 岸沿いに架橋していると仮定した.津波による漂流物の 衝突に関する研究は,漂流物挙動を表現するモデル化も 含めた数値解析および水理模型実験ならびに漂流物衝突 力の算定方法など数多い²⁴⁹が,多くが前述の震災前の 研究であり,本論文で想定している大型構造物を対象と

(a) 地震直後

(b) 地震発生30分後図-2 水位変化コンター図

した定量的な検討はなされていないようである.

本論文は、まず南海トラフの巨大地震モデル検討会³ にて提示された津波波源モデルを参考に作成した4連動 地震を波源モデルとした津波伝播解析を実施することに より、漂流した大型船舶の衝突時速度と衝突方向を設定 している.次に、衝突によって大型船舶の失った運動量 は衝突位置の力積に等しいと仮定し、衝突時間の半分を 最大とする正規分布形の力波形として橋梁全体系モデル に入力する動的応答解析を実施した結果を示す.さらに、 衝突する柱部を積層シェル要素でモデル化した静的弾塑 性有限変位解析を実施することにより衝突方向の耐荷力 を求め、被衝突部材が耐えうる最大の漂流物について考 察する.

図-3 最大流速時の大阪湾の水位変化コンター図と 対象橋梁付近の流速ベクトル図

2. 津波伝播解析

(1) 解析条件

南海トラフの巨大地震モデル検討会⁹にて提示された 津波波源モデルを参考にして、東海地震、東南海地震、 南海地震、日向灘地震の4連動地震(Mw=9.0, ここに、 Mw:モーメントマグニチュード)を想定した波源モデル で津波伝播解析を実施した.解析領域は、着目している 大阪湾を中心に、最小計算格子幅は30 mの6段階多層メ ッシュ構成とした.津波伝播解析は、想定した波源モデ ルからMansinha and Smylieの方法⁹によって計算される海 底地盤変動を海面の初期水位変動として、2次元浅水流 モデルを差分法に基づく非線形長波理論で行った.なお、 計算には対象橋梁付近の台風期朔望平均満潮位T.P.+0.9 m(O.P.+2.20 m)を考慮している.

(2) 解析結果

波源モデルから計算された地震直後および地震発生30 分後の水位変化コンター図を図-2に示す.30分後には太 平洋から大阪湾へ通じる紀伊水道に津波が到達している. 対象橋梁への第一波は約90分後に到達し,最大津波高さ は114分後に記録した.湾内であることから,津波は地 形との反射により複雑な波高分布を示した.流速は,南 北成分と東西成分流速の合成流速でとると,109分後に 最大流速1.1 m/sを記録し,その時の流向は30.7°(流向 は北方向から右回りに正をとる,以下同様)であった. 最大流速時の大阪湾の水位変化コンター図と対象橋梁付 近の流速ベクトル図を図-3に示す.対象橋梁の架設方向 は150°としているため,大型船舶の衝突方向は橋梁に 対して60.7°となる.

3. 大型船舶の衝突解析

大型船舶には大阪湾に入港の可能性があるHandyMax

図-4 大型船舶の衝突位置と衝突角度

図-5 対象橋梁全体系解析モデル図

クラスの満載排水量50,000 tonのばら積み貨物船(全長190 m)を想定した. 津波伝播解析によって得られた流向に 配置すると図-4に示すようになり,大型船舶の船首が主 塔基部から13 mの位置に衝突するものとした.

なお、本解析で使用したソフトにはSeanFEM(ver.1.22) を用いて、幾何学非線形性は有限変位・有限ひずみ・有 限回転(Updated Lagrange法)までを考慮する.以後の解 析にも同じ解析ソフトを用いた.

(1) 解析条件

a) 解析モデル

衝突時の波動伝播が与える橋梁全体挙動を精確に表現 するために、橋梁全体系モデルによる動的弾塑性有限変 位解析を用いた.材料非線形性は、橋梁全体系の耐震解 析でよく用いられるファイバーモデル^{ル ®}で評価するも のとした.ただし、ファイバーモデルは平面保持の仮定 により、衝突部位にみられる局部座屈のような断面変形 を伴う座屈を表現することはできない.橋梁全体系の解 析における連成座屈強度を近似的に考慮する文献8)のよ うな手法もあるが、対象橋梁の衝突部位である主塔柱部 の幅厚比は比較的小さい(R=0.49,ここに、Rは補剛板の 幅厚比パラメータ)ことから、部材座屈の影響のほうが 大きいと考えられるため、本検討では局部座屈の影響を 考慮しないものとした.衝突部位やその周辺の局所的な 損傷状態については、後述するシェルモデルを用いた静 的弾塑性有限変位解析結果との比較を通して議論する.

図-7 衝突部ひずみ最大時刻のひずみコンター図

解析モデル図を,骨組み表示とファイバー断面表示を合わせて図-5に示す.

b) 衝突力

大型船舶の衝突によって生じる荷重を力波形として解 析モデルへ与える.力波形は、衝突によって大型船舶は 完全に停止して、失った運動量は主塔の力積に等しいと 仮定し、衝突時間dtの半分を最大とする正規分布形とし た.衝突時間dtの大型船舶の運動量の積分は 3σ (ここに、 σ :標準偏差)を採ることで衝突現象全体の力積と 99.73%一致する.大型船舶の質量mと津波伝播解析によ って得られた流速vを用いて、時間tの関数として力波形 F(t)を整理すると次の式(1a)ようになる.

$$F(t) = \frac{mv}{\sqrt{2\pi} \cdot \sigma} \cdot e^{-\frac{(t-\mu)^2}{2\sigma^2}}$$
(1a)

$$\mu = \frac{dt}{2} \tag{1b}$$

$$\sigma = \frac{\mu}{3} \tag{1c}$$

ここに, μ :平均値である.この力波形F(t)の最大値 F_{max} は $t=\mu$ より,

$$F_{\max} = \frac{mv}{\sqrt{2\pi} \cdot \sigma} \tag{2}$$

となる.

衝突時間dtを1.0sとして、衝突前に1.0s間,波形全体が 10.0sとなるようにゼロを追加して力波形を作成した. 作成した力波形を図-6に示す.想定した大型船舶では最 大衝突力Fmacは131,651 kN(1.5s)となっている.

(2) 解析結果

前述の力波形を用いて動的弾塑性有限変位解析を実施 した.解析結果として図-7に、衝突部位の直ひずみが最 大の時刻のひずみコンター変形図を主塔衝突部拡大図と

ともに示す.また,衝突部(図-7の点a)および最大変 形をした衝突側の主塔頂部(図-7の点b)における応答 変位時刻歴波形を図-8に示す.同図は,図-7に示すよう に,橋軸方向をX(青実線),直角方向をY(赤実線) の記号で示している.

最大衝突力が発生する1.5 sの直後の1.59 sに主塔面内方向に最大変形0.09 mが発生し、それから0.57 s後に波動伝播で主塔頂部へ到達し、最大変位が生じている。衝突位置の圧縮ひずみは僅かに降伏ひずみを超過しており、最大で2,748 μ (\Rightarrow 1.12 ϵ , SM570材)であった。仮定した衝突時間1.0 sにおいては、50,000 tonの大型船舶が衝突すると衝突部位が僅かに塑性化する程度であり、橋梁全体への影響は小さいといえる。

4. 被衝突部材が耐えうる最大の漂流物に対する 衝突解析

3章の数値シミュレーションでは、大型船舶の質量m および衝突時間dtを仮定して衝突現象が橋梁全体へ与え る影響について検討したが、その仮定による状況は限定 的であるため、ここでは、被衝突物である主塔の耐荷力 と等しい衝突力になる最大の漂流物質量Mを算定し、そ のときの全体挙動について検討を行うものとする.検討 手順については次のとおりである.

- (a) 衝突部材である主塔下柱を、局部座屈を考慮で きる弾塑性シェル要素でモデル化し、衝突方向 のプッシュオーバー解析を実施する.得られた 荷重-変位曲線の最大荷重は衝突方向耐荷力Pm であり、その時の変位をδmとする.
- (b) 船舶の衝突位置は主塔と同じだけ座屈変形する と仮定すると、衝突してから停止するまでの双 方の変形量の合計はるmの2倍となり、その間、等 加速度直線運動で停止したときの時間を衝突時 間dtとする.
- (c) 衝突方向耐荷力P_m, 衝突時間dtおよび津波伝播解 析によって得られた流速vを用いて,式(2)から最

大衝突力 $F_{max}=P_m$ となる質量mを算定する. つまり, この質量mは耐荷力と等しい衝突力が発生する最 大の漂流物質量Mとなる.

(d) 最大漂流物質量Mおよび衝突時間dtを式(1a)に代入した力波形F_n(t)を入力した衝突解析によって, 衝突部材が耐える最大の漂流物が衝突した際の 挙動を再現し,その時の衝突現象が橋梁へ与え る影響について考察する.

(1) 衝突部材耐荷力の算定

a) 解析モデル

主塔柱基部から下段水平材までの主塔下柱を抜出し, 図-9に示すような解析モデルとした. 衝突位置付近を弾 塑性シェル要素でモデル化し,端部は線形はり要素の単 純支持とした. シェル要素と線形はり要素は,剛な仮想 部材で連結し,ダイヤフラムを3.0m間隔で配置した.

使用した要素は積層タイプの弾塑性シェル要素であり、 応カーひずみ関係は2次勾配がE/100のバイリニア(ここ に、E:鋼材のヤング係数)、降伏判定はMises降伏条件、 塑性流れ則(応カー塑性ひずみ増分構成則)は関連流れ 則としている.載荷面は高さ方向4.2 m,幅方向9.07 mの 範囲とした.なお、載荷面周辺は大きなたわみや応力が 集中されると予想されるため、柱軸方向および母材幅方 向の要素分割を細分化している.

b) プッシュオーバー解析

主塔に作用する死荷重として0.13 N_y (ここに, N_y :全断面降伏軸力 = 765,000 kN)を頂点に載荷した後,津波伝播解析よって得られた衝突方向に, $\mathbf{20-9}$ (a)に示す範囲を載荷面とした変位制御のプッシュオーバー解析(静的弾塑性有限変位解析)を実施した.得られた荷重一変位曲線を**20-10**に示す.この図は,縦軸に載荷荷重P,横軸に衝突方向変位 δ をとっている. δ = 676 mmで最大荷

重 P_m に達して、 δ =1678 mmで構造不安定となり終局 P_u に 達したと判断できる.載荷位置付近の柱断面は前述の通 り幅厚比は小さいため、最大荷重を過ぎた後の劣化域に 急激な耐力低下は見られない.このことから、橋梁全体 系モデルにおける衝突位置へのファイバーモデル適用で、 衝突位置塑性化の評価が危険側になることはないと考え られる.最大荷重時および終局時のミーゼス応力コンタ 一変形図および同図中aの位置の断面変形図を図-11に示 す.終局時の載荷面周辺では、局部座屈の進展が見られ、 断面変形に伴う座屈が表現できている.

(2) 衝突部材が耐えうる最大漂流物の想定

衝突物と被衝突物の座屈変形は同じ、衝突後に等加速 度直線運動で停止すると仮定すると、衝突時間は、プッ シュオーバー解析から得られた最大荷重時の変位δ_mおよ び津波伝播解析によって得られた流速νを用いて次の式 (3)のように表される.

$$dt' = \frac{2\delta}{v} = \frac{4\delta_m}{v} \tag{3}$$

さらに、衝突部材が耐えうる最大漂流物質量Mは、式 (2)の最大衝突力 $F_{max} = P_m$ とすることで次の式(4)で求める ことができる.

$$M = \frac{\sqrt{2\pi} \cdot \sigma}{v} \cdot F_{\max} = \frac{2\sqrt{2\pi}}{3} \cdot \frac{\delta_m \cdot P_m}{v^2}$$
(4)

式(4)より,最大漂流物質量M = 152,395 tonが求まる.この漂流物は石油タンカーでは全長270 m程度の大規模 (Suezmax)分類に相当する.

(3) 最大漂流物の衝突解析

式(3)および式(4)で求めた最大漂流物質量Mおよび衝突時間dtを式(1a)に代入して求めた最大力波形F_m(t)を図-12 に示す.

3章の解析手法で,最大力波形F_m(t)を入力する動的弾 塑性有限変位解析を実施した.衝突部位の直ひずみが最 大の時刻のひずみコンター変形図を主塔衝突部拡大図と ともに図-13に示す.また,衝突部(図-13の点a)およ び最大変形をした衝突側の主塔頂部(図-13の点b)の変 位時刻歴を図-14に示す.衝突位置では最大5,996µの圧縮 ひずみ(≒2.66ε,,SM570材)が発生し,主塔面内方向に 最大0.171 mの変形が見られた.衝突側主塔頂点変位に残 留変位を残すような応答は見られない.また,X方向およびY方向の時刻歴波形はそれぞれ固有周期(X:5.07sec,Y:3.27sec)とほぼ同じ安定した自由振動をしており,衝突後の波動伝播による振動特性を表現できていると考えられる.

5. おわりに

津波による大型漂流物が、大阪湾湾岸沿いに位置する 長大橋へ与える影響を、数値シミュレーションによって 定量的に評価を行った. Mw9.0の4連動地震を想定した 津波伝播解析では、湾岸特有の複雑な流速分布が表われ、 対象橋梁には109分後に最大流速が発生した. 漂流物と して想定した満載排水量50,000 tonの大型船舶は、津波伝 播解析で得られた方向と流速で、対象橋梁の衝突部位 (主塔下柱) に2,748µのひずみが発生する被害をもたら した.

さらに、局部座屈が考慮できる弾塑性シェルモデルを 用いたプッシュオーバー解析によって、衝突部材が耐え うる最大の漂流物を算定し、橋梁全体の衝突現象を評価 する解析手法を提案した.この手法は、衝突部材の部材 耐荷力をシェルモデルを用いた弾塑性有限変位解析によ って求めるため、衝突時の局所的な座屈および部材座屈 が評価され、その影響は橋梁全体系へ入力する最大衝突 力として考慮される.これにより、解析規模が大きい橋 梁全体系モデルへの適用も容易であり、その解析例を示 した. 長大橋に大型漂流物が衝突したときの挙動を詳細に推 定する数値シミュレーションの確立のためには、シナリ オ設定の妥当性,解析的精度ならびに要求性能や衝突後 の供用性に対する評価方法について、さらに検討を要す るものであり、今後の課題としたい.

参考文献

- 例えば、宮城大学事業構想学部:東北地方太平洋沖 地震 緊急被害状況報告(宮城大学)気仙沼および周 辺小漁港集落報告書,2011.4.
- (株慶善, 宇佐美敦浩, 水谷法美:構造物前面における 津波漂流コンテナの挙動とその衝突力に関する実験 的研究,海洋開発論文集, Vol.24, pp.51-56, 2008.
- 水谷法美,宇佐美敦浩,小池竜:津波による小型船舶の漂流特性とその衝突力に関する実験的研究,海洋 開発論文集,Vol.23, pp.63-68, 2007.
- 有川太郎,大坪大輔,中野史丈,下迫健一郎,石川信 隆:遡上津波によるコンテナ漂流力に関する大規模 実験,海岸工学論文集,第54巻,pp.846-850,2007.
- 5) 内閣府(防災):南海トラフの巨大地震モデル検討 会,第7回,2011.12.27.
- Mansinha, L. and Smylie, D. E.: The Displacement Fields of Inclined Faults, Bulletin of the Seismological Society of America, Vol.61, No.5, pp.1433-1440, 1971.
- Nonaka, T. and Ali, A.: Dynamic Response of Half-Through Steel Arch Bridge Using Fiber Model, Journal of Bridge Engineering, ASCE, Vol.6, pp.482-488, 2001.
- 8) 杉岡弘一,松本茂,大石秀雄,金治英貞,馬越一也, 長井正嗣:局部座屈を簡易に考慮するファイバーモ デルを用いた橋梁全体系解析に関する基礎的検討, 構造工学論文集,No.57A, pp.703-714, 2011.3.

COLLISION SIMULATION OF A LARGE FLOTSAM AND A LONG-SPAN BRIDGE IN A TSUNAMI

Kazuya MAGOSHI, Hanbin GE, Tetsuya NONAKA, Takanori HARADA and Keisuke MURAKAMI

Recently, with the 2011 Tohoku Earthquake occurred, it is becoming important to consider the influence by tsunami flotsam colliding with an important structure. Also, the collision analysis method is being received much attention. However, practical applications of the collision analysis have not been investigated yet. Therefore the purpose of this study is to develop and evaluate a collision analysis method capable of simulating the phenomenon to which large flotsam collides with an important structure like the long-span bridge. Moreover, the marginal size of tsunami flotsam which can avoid collapse to an object bridge is computed using this method.