京コンピュータによる橋梁を含む 広域3次元津波シミュレーション

野中哲也¹•本橋英樹¹•吉野廣一²•原田隆典³•川崎浩司⁴•馬越一也⁵•菅付紘一⁵

¹正会員 博(工) 株式会社地震工学研究開発センター(〒880-0902 宮崎市大淀 3-5-18 南宮崎駅前ビル)
²正会員 株式会社地震工学研究開発センター(〒880-0902 宮崎市大淀 3-5-18 南宮崎駅前ビル)
³正会員 工博 宮崎大学教授 工学部社会環境システム工学科(〒889-2192 宮崎市学園木花台西 1-1)
⁴正会員 博(工)名古屋大学准教授 大学院工学研究科社会基盤工学専攻(〒464-8601 名古屋市千種区不老町)
⁵正会員 修(工) 株式会社耐震解析研究所(〒466-0059 名古屋市昭和区福江 2-9-33)

1. はじめに

従来の広域の津波浸水シミュレーションは、非線 形長波理論による平面2次元津波解析を実施して, おおよその津波高さ(津波浸水深)や浸水エリアを 求めるものであった.確かにこのシミュレーション は津波防災等において重要であるが, 防災拠点や避 難ビル等の重要施設,橋梁や防波堤のインフラが, 想定される津波の波力に対して、健全で役目を果た すかどうか定量的には評価できない. この平面2次 元津波解析によって得られた津波高さや流速から, 対象構造物に作用する波力を経験的に算出している のが現状である.また,波力算出だけでなく,津波 浸水状態についても平面2次元津波解析は正確では ない. 建物等の影響を考慮して間接的に粗度係数で 表現して浸水状態を評価しているが、本来は津波が 陸上に遡上すると、地形や構造物等の影響を受けて 複雑な挙動(建物の間を流れ、方向と流速が変化し たり,建物の背後に回り込む等)を示し,平面2次 元解析結果のように一律に津波は浸水しない.

そこで、筆者らは、3次元津波解析による評価法 を提案して、実際の橋梁の津波被害再現解析を実施 している.東日本大震災発生から4ヶ月後には、そ の有効性を発表して、実際の橋梁の津波被害の再現 解析¹⁾を実施した.その翌年には、橋梁だけでなく 周辺地形を含めた津波被害の再現解析²⁾を実施して きた.

本研究では、その考えを拡張して、数橋を含む広 域の3次元津波シミュレーションを実施しようとす るものである.前回実施した解析モデルのメッシュ 数は、一般的なワークステーションを使用して約

写真-1 京コンピュータ(理化学研究所 HP より)

188 万であった. ワークステーションの並列処理 (PC クラスタ)をしても,現時点では約 3000 万メ ッシュが現実的な限界であると思われる. 今回対象 とした数橋を含む広域3次元津波シミュレーション のメッシュ数は,最終的には約 10 億メッシュを予 定しており,通常のコンピュータでは処理不可能で ある.そこで,本研究では,世界最高峰のスーパー コンピュータである「京コンピュータ」を用いての 3次元津波シミュレーションを実施している. 今回 は,通常のワークステーションでは不可能な約 1.5 億メッシュでの解析をまず試みたので,その結果を 報告する.

2. 京コンピュータと解析ソフトの高速化

(1) 京コンピュータ

世界最高峰のスーパーコンピュータである「京コ ンピュータ」(写真-1)は、現在、世界第4位の性 能(総理論演算性能:11.28PFLOPS)を有している. このコンピュータは、大規模な並列計算機(計算/ ードを8万台以上結合したシステム)であり、通常 のコンピュータとはアーキテクチャが異なっている. 京コンピュータ上で性能を出すためには、プログラ ムを高並列化するなど工夫しなければならない.

写真-2 宮崎市内

(2) 解析ソフトの高速化方法

パソコンやワークステーションで実行していた解 析ソフトをスーパーコンピュータ上で、そのまま動 作させても十分な性能がでない場合があることから、 高速化のためにソースプログラムを修正することが 多い.市販の解析ソフトの場合、ソースプログラム の修正はできないが、解析ソフトを実行するだけで も、ある程度の高速演算、特に並列処理を意識する 必要がある.

本研究で使用する解析ソフト OpenFOAM³⁾は、オ ープンソースコードの流体解析ソフトであり、ソー スプログラムの修正が行える.本解析ソフトは、す でに並列処理を意識したプログラムとなっているた め、 京コンピュータ上で動作させるのに、 京コンピ ュータ特有の並列処理機能のための最小限の修正だ けで済んだ. 今回の解析規模は約 1.5 億メッシュ程 度であり,その規模を効率よく解くために並列性能 を評価(並列数と加速率の評価)した結果,96計算 ノード(8 コア/1 計算ノード)で計算するのがよ いことがわかっている. それ以上の計算ノードを使 っても多少の速度向上は期待できるが、全体的に効 率が悪くなる. 最終版の 10 億メッシュモデルでは 1024 計算ノード以上を想定しているが、今回の解析 では 96 計算ノードで解析することにした. 宮崎市 の中心部(6km×5kmの範囲)を例にして説明する. 解析空間を分割して解析する領域分割法を採用す

図-2 本3次元津波シミュレーションの方法

る. この手法はすでに OpenFOAM に組み込まれ, 解析空間を任意に分割することができる.本解析で は,図-1 に示すように宮崎市中心部の3次元解析 空間をX軸方向に8分割,Y軸方向に6分割,Z軸 方向に2分割の合計96分割した.分割された各小 空間に対してひとつの計算ノードを割り付ける.各 小空間をさらに並列計算(8スレッド並列)させ, 合計で並列数が768となり,この並列数で本解析を 実施した.

3. 解析対象とシミュレーション条件

(1) 対象領域

検討対象地域は、**写真-2** で示すように宮崎市で あり、1 級河川(大淀川),空港,港,さらに防災 拠点となる県庁や市役所が集まっている.この領域 に対して、3次元の津波シミュレーションを実施す る.対象領域のメッシュサイズについては、水平方 向で 5m,高さ方向で 0.5~1.0m として、対象橋梁 周辺ではさらに細かくした.そのため、メッシュ数 は約1.5億にもなる大規模解析モデルとなった.

(2) 対象橋梁

大淀川には,**写真-2**に示したように複数の大型 橋梁がかかっており,今回の検討で着目する橋は, 河口から2番目の赤江大橋である.

(3) 津波波源

津波波源としては、中防防災会議から公表された 南海トラフの M9 波源モデル(以下、「中防波源モ デル」と呼ぶ)を用いることとした.中防波源モデ ルは、多くの小断層から成り、その小断層が破壊速

図-3 平面2次元解析の各領域

領域名	領域サイズ			
	メッシュ サイズ	経度分割数	緯度分割数	メッシュ数
A	2430m	700	600	420000
В	810m	1243	778	967054
С	270m	700	796	557200
D	90m	748	1210	905080
Е	30m	730	805	587650
F	10m	1057	1807	1909999
合計メッシュ数(万):				534.7

表-1 メッシュサイズ

合計メッシュ数(万):

度でずれる(隆起する)のが特徴的である.

(4) シミュレーションの手順

京コンピュータのようなスーパーコンピュータを 使っても、このような広範囲の3次元津波シミュレ ーションの計算は容易ではない. 前述した領域分割 法による高速化は当然必要であるが、大規模モデル の津波シミュレーションを効率よく実施するために、 本研究では解析空間および解析時間の最小化を考え, 図-2に示すような方法を提案する.

この図に示すように本提案の津波シミュレーショ ンは以下に示す(a)~(c)の3つのステップから成る.

(a) 2次元津波解析の実施:ステップ1

波源域を含む西日本全体を3次元津波シミュレー ションするのは、 スーパーコンピュータを用いても 現実的ではない(研究レベルで実施されているケー スもあるが、メッシュサイズは大きく精度が低い). そのため、まずは非線形長波理論による平面2次元 津波解析を実施する.この解析法は、一般的に行わ れている方法であり,波源を含む広範囲から対象橋 梁を含む最小領域までの領域に対して津波解析を実 施する.この解析により,対象橋梁近辺の津波襲来 状況の確認や最小領域における水位と流速を得るこ とができる.

(b) 3次元津波解析の条件設定: ステップ2

前述のステップ1で得られた情報から解析条件を 設定する.具体的には、まず対象橋梁近辺の津波襲 来状況(流速や方向,水位変化など)から判断して

図-4 中央防災会議津波波源 (ケース 11)

3次元解析の解析範囲を決定する.決定した範囲で 3次元津波解析を実施するが、その範囲でも解析時 間が膨大となる.そのため、地震発生時や対象橋梁 に津波が到達する時刻(対象橋梁地点で水位変化が 起こる時刻)から、3次元津波解析を実施するので はなく、対象橋梁が桁流出といった被害を受ける直 前から,解析を実施する方が効率的である.よって, 本研究では、一番沖合の橋梁の橋桁に津波が当たる 前の状況から解析を開始することにした. 解析を実 施する前に、その時点の状態(初期状態)をつくる 必要があるが,その状態を前述の平面2次元解析の 結果から作成するようにした.

(c) 3次元津波解析の実施: ステップ3

前述のステップ2で設定した初期状態から,3次 元津波解析を実施する. その解析結果から, 検討対 象地域の津波浸水状況を確認する.また、対象橋梁 に作用する波力が求まり、対象橋梁の桁や橋脚の流 出の判定を行う.

なお、本研究では、前述したように3次元津波解 析ソフトとして, OpenFOAM を採用する. この OpenFOAM は、多相流、燃焼、磁場などの用途に 応じた各種ソルバを有している.本解析では, OpenFOAM のうち, 非圧縮・不混和流体の2相流 ソルバである interFoam を用いた. この interFoam は, 離散化手法として有限体積法を、自由表面流体解析 モデルには VOF 法を採用している.

4. 平面2次元津波シミュレーションの実施

前述した本シミュレーションの方法(図-2)に従 って,非線形長波理論による平面2次元津波解析を 実施する.本解析に必要な地形の各メッシュ領域を 図-3 に、各メッシュサイズを表-1 に示す. この表 に示すように、最小メッシュの解析領域は、領域 F であり, そのサイズは 10m になっている. なお, こ の10mメッシュは、国土地理院から公開されている 5mメッシュデータ基に作成した.

(a) 地震発生後3分

(b) 地震発生後 13 分

2次元津波解析結果のスナップショット 図-5 10 中防波源 8 • EERC 6 水位(m) 4 2 0 -2 15 30 45 60 75 90 105 120 135 150 0 時間(min) 図-6 2次元津波解析結果の水位履歴

本解析で採用した中防波源モデルは,5773 個の 5km メッシュの小断層で近似され,これまで公開さ れてきた波源と異なる.著者らは,中央防災会議等 から公表されてきた情報やこれまでの知見を基に, 東海地震,東南海地震,南海地震,日向灘沖地震の 4連動地震を想定して,M9の波源モデルを提案し

(a) 地震発生後 25 分

(b) 地震発生後 32 分

(c) 地震発生後 35 分図-7 2 次元津波解析の結果

図-8 F領域と3次元津波解析領域

てきた⁴⁾が,このような多くの小断層には分けなかった.

本解析では、中防波源モデルの中でも、宮崎市に 対して、最も影響の大きいケース 11 (図-4)を採

図-9 検討対象の橋梁

図-10 3次元解析モデル

(a) 3 次元モデル図

(b) 3次元メッシュ図

用した.この波源は、「室戸岬沖」と「日向灘」に 大すべり域を2つ設定した波源である.なお、本解 析では、地震によって堤防が崩壊したと仮定し、初 期水位を満潮だけなく高潮分も考慮した.

この中防波源モデルによる解析結果を図-5 に示 す.この図は、地震発生から大きな津波が宮崎市内 の沿岸部に到達する 32 分までの代表的な水位コン ターのスナップショットを示している.同図(b)か ら、沿岸到達前に津波が何波も発生しているのがわ かる.河口から沖合 2kmの位置(以下,「評価点」 と呼ぶ)での津波の水位変化を表したのが図-6 で ある.この図からも津波が複数襲来していることが わかる.参考までに、著者らが提案した波源の結果 も同図内(グラフ内の「EERC」)に示しているが、 前述したように小断層に分けていないため、水位変 化の山の数が異なっている(全体の水位変化の傾向 は似ている).このように何波も襲来するため、後 述するように3次元解析において、経過時間のどの 区間を計算するか判断を難しくする.

本平面 2 次元解析における宮崎市内の浸水状態の スナップショットを図-7 に示している. 同図(a)か ら,地震発生後 25 分で,宮崎市内に第1波が到達 し,同図(b)から評価点の位置で津波高さが最大と なり,同図(c)から河口周辺で津波高さが最大 (10m弱)となることがわかる.

5. 解析条件および初期状態の設定

(1) 3次元解析領域の設定および対象橋梁の概要

前述した平面2次元津波解析結果の津波襲来状況 (検討対象地点の流速と方向)から判断して,3次 元津波解析の領域を図-8(青色枠)に示すように幅 5km,長さ6km,そして高さを56mとする3次元空 間(図-1参照)とした.

検討対象の赤江大橋は,8径間 PC 連続箱桁橋で ある. 概略図を図-9 に示すが,この図は Web 上か ら得られた情報を基に作成したものであり,本研究 で作成した橋梁モデルは実際のものと詳細な部分で 異なっている.

(2) 3次元解析モデル

本研究では、次のような手順で、この3次元空間 の解析モデルを作成した.まず、3次元空間に対し て、国土地理院から公開されている 5m メッシュ情 報から3次元の地形を作成し、その地形上に3次元 構造モデルを構築する.想定している津波で流され ないと予想できる3階建以上の RC 建物もモデル化 した.また、河川堤防や盛土などが不正確なところ があったため手作業で微調整した.このようにして 作成した3次元空間のモデル図と3次元メッシュ図 を図-10に示す.

次に、5m メッシュサイズの3次元空間上に、対 象橋梁をモデル化するが、5m メッシュサイズでは

(a) 3次元メッシュ図(橋梁周辺)

(b) 3次元メッシュ図(拡大) 図-11 対象橋梁の3次元解析モデル

(c) 地震発生から 40 分後の状態 図-12 3 次元津波解析における津波襲来のイメージ

粗すぎるため,橋梁周辺(図-8 参照)だけは,水 平方向 1m,高さ方向 50cmのメッシュとした.粗い メッシュと細かいメッシュの接続は,ステッチメッ シュ機能を用いてスムーズに連続させた.細かいメ ッシュサイズでモデル化した3次元解析モデルのメ ッシュ図を,図-11 に示す.このメッシュサイズで も,橋梁を正確にモデル化することができず,多少 の凹凸が現れる.今後予定している 10 億メッシュ ではこれが改善される.

また、3次元解析領域をこのように小さくしても できるだけ影響がないように、この領域の境界に対 して、津波を作用させる入射境界と津波が橋梁を通 り過ぎて反射しない放射境界(透過境界)を設定し た.

図-14 初期水位と初期流速

(3) 初期状態の設定

本モデルに対して,次に示すような方法で,初期 状態を設定して解析することになる. 初期状態の作 成方法を図-12 と図-13 を用いて説明する. 通常は, 水位変化なし, 流速ゼロの静止状態で, 津波を作用 させる(図-12(a))ことが多い.本解析では、解析 時間短縮のため,ある程度,津波が襲来したとき (図-12(b))から、3次元津波解析を実施する.前 述した平面2次元津波解析における評価地点(図-8 内の評価地点)の水位変化を図-13 (図-6 のグラフ の 20~50 分の拡大) に示す. 平面 2 次元解析結果 の対象橋梁位置の津波高さから、おおよその橋梁の 桁の高さまで津波水位が達する時刻がわかる. その 時刻より前で桁下に津波が当たらないと予想できる 32 分から 40 分の 8 分間(480 秒)を解析すること にした.その時間を図-13のグラフ内の太線で示し ている.ここで設定した初期状態を表示させると, 図-14 のようになる. この図は、初期設定する水位 と流速を示している.なお,2次元解析結果の流速 を用いているため、この時点で鉛直方向には流速の 変化はない.

図-15 宮崎市内の津波浸水アニメーション結果

(c) 津波が橋桁を乗り越えた時点図-16 対象橋梁の解析結果のスナップショット

(4) 3次元解析の方法

前述したように初期状態(図-12(b))から,3次 元解析を実施する(解析終了は図-12(c))が,その 方法を次に示す.2次元解析結果から時刻32分の 水位と流速データを得て,海面の全メッシュ上にそ の水位を,水の領域の全メッシュ上にその流速を初 期値として設定する.3次元解析を実施する時点で, 入射境界(造波境界)から,その地点の2次元解析 結果の流速で水を流入させる.

6. 3次元津波シミュレーションの結果

(1) 浸水状態

地震発生から 40 分後の宮崎市内の浸水状態を図-15 に示す.この図から,津波が陸上に遡上して, 地形や構造物等の影響を受けながら,津波が浸水し ている状況がわかる.特に,建物の間を流れ,方向 と流速を変化させながら,建物の背後に回り込むと いった複雑な挙動になっている.前述した平面2次 元解析結果の図-7(c)のように,陸上を一律に津波 が浸水している状態とは異なる.

(2)対象橋梁の結果

対象橋梁に津波が作用する状態のスナップショットを図-16 に示す. 同図(a)から津波が橋桁に当たる前の状況, 同図(b)から津波が橋桁に当たった瞬間の挙動, 同図(c)から津波が橋桁を乗り越えてい

く状況がわかる.

また、本3次元津波解析により、対象橋梁の橋桁 周りの圧力が算出できる.その圧力から鉛直方向の 波力へ変換して、その波力(橋梁中央部の1径間分 の合計波力)の時刻歴をグラフにすると図-17のよ うになった.このグラフから、桁に津波が衝突して、 津波が上部工を越流し始めた時点(39.4分付近)で、 最大の鉛直方向波力を示すのがわかる.この鉛直波 力が約23000kNにも達するため、鉛直方向に浮き上 がり桁が流出する可能性はあると思われる.ただし、 前述したように、本橋梁のモデル化が正確でない部 分もあるため、実際に流出するかどうかの判定は、 対象橋梁の正確なモデル化および文献2)で提案して いる方法で行う必要がある.

なお,このグラフにおいて,最大荷重を示した後, 鉛直波力が低下するのは,津波が桁を覆いかぶさり 下方向に押さえる力が発生したからである.

7. まとめ

本研究では、橋梁を含む広域の3次元津波シミュ レーションを実施した.本研究で得られた主な結論 は以下のとおりである.

- スーパーコンピュータである京コンピュータ上 にて、橋梁を含む大規模な解析モデルによる3 次元津波解析を実施した.
- (2) 非線形長波理論による解析結果の水位と流速を 3次元津波解析の初期状態として解析する効率 のよい解析方法を提案した.
- (3) 広域の3次元津波シミュレーションにより、宮 崎市内の詳細な浸水状況が予想できた.
- (4) 本3次元津波解析により、想定される最大級の 津波に対して、対象橋梁の橋桁が流失する可能 性があると思われる.

また、今後の研究課題として、次のような課題が 挙げられる.

- (課題 1) 津波襲来の前に地震(ゆれ)により,構造物が被害を受けるが、その影響を考慮していない.特に、3次元解析上での堤防崩壊の状況をつくり出す必要がある.
- (課題2) 2次元解析結果を基にして3次元解析の 初期状態を作成しているため、3次元解析 を実施した時点で、計算が不連続になって いる.

謝辞:本論文の結果は,理化学研究所のスーパーコ ンピュータ「京」を利用して得られたものです (課題番号:hp130031).また,流体解析ソフト OpenFOAMを「京」上へ移植および高速化するに あたり,一般財団法人高度情報科学技術研究機構 の小久保達信氏,井上義昭氏,山本秀喜氏,増田典 氏,高田大輔氏にいろいろとご指導をいただきまし た.ここに記して謝意を表します.

参考文献

- 原田隆典,村上啓介, Indradi Wijatmiko,坂本佳子, 野中哲也:津波により桁が流失した床版橋の再現解 析,第14回性能に基づく橋梁等の耐震設計に関する シンポジウム講演論文集,pp.103-110,2011.
- 2) 野中哲也,本橋英樹,原田隆典,坂本佳子,菅付紘 一,宇佐美勉:津波波源から橋梁までの全体系津波 再現解析,第15回性能に基づく橋梁等の耐震設計に 関するシンポジウム講演論文集,pp.25-32,2012.
- OpenFOAM ユーザー会,一般社団法人オープン CAE 学会: OpenFOAM ユーザガイド和訳, 2010.
- 馬越一也, 葛漢彬, 野中哲也, 原田隆典, 村上啓介: 津波 襲来時における大型漂流物の長大橋衝突シミュレー ション, 土木学会論文集 B3(海洋開発), Vol.68, No.2, pp.I_222-I_227, 2012.11.