パソコンで解く

ファイバーモデルによる 弾塑性有限変位解析ソフトウェア

EERC/Fiber (Ver.1.2)

<追加機能の説明>

平成 23 年 5 月

宮崎大学発ベンチャー企業 (株)地震工学研究開発センター

1. Ver.1.2 の追加機能

図書「パソコンで解くファイバーモデルによる弾塑性有限変位解析」(丸善出版)に添付 された CD には,解析ソフトウェア EERC/Fiber (Ver. 1.0)が納められています.このソフ トウェアに対して,次の機能(材料)を追加したものを Ver. 1.1 として配布してきました.

①非対称バイリニアの追加

材料に対して, 圧縮側と引張側の特性をそれぞれ変えることができます. これにより, 図書 P94 で解説したように, 鋼材の圧縮側だけ降伏点を低減させる(引張側はそのまま で低減させない) ことができるようになりました.

②非線形弾性の追加

部材によっては,履歴吸収エネルギーが十分に期待できない部材があります.例えば, 橋梁の RC 床版が挙げられます.そのような部材に対して,履歴ループを描かない非線形 弾性の材料モデルを追加しました.

今回は、この Ver. 1.1 から、さらに次のような機能強化を行い、Ver. 1.2 として読者の皆様へ配布することにしました.

③コンクリート材料の追加

材料としてコンクリートが追加されましたので、コンクリート構造物、鉄筋コンクリート(RC)構造物、および鋼とコンクリートの合成構造等に対しても解析できます.例えば、RC 橋脚に対しても、図書 P24 で示した鋼製橋脚と同様な解析が可能となりました.

④RC 断面の定義機能の追加

RC 断面の定義ができるようになりました.ひとつの部材断面に対して, コンクリート と鉄筋を定義することになります.

⑤円形断面の定義機能の追加

部材断面として,円形断面が容易に定義できます.これにより,円形断面鋼製橋脚や コンクリートが充填された鋼管等に対して,効率よくモデル化できるようになりました.

本資料では、図書に添付された EERC/Fiber の Ver. 1.0 から Ver. 1.2 ヘバージョンアップ した場合の追加機能(上記①~⑤)の入力方法について説明しています.

(ご注意)

本資料および解析ソフトウェア EERC/Fiber(Ver.1.2)は、図書「パソコンで解くファイバ ーモデルによる弾塑性有限変位解析」を購入され、既に EERC/Fiber をお使いいただいて いる方を対象としています.

2. 追加された「材料」の入力

【非対称バイリニア(移動硬化則)】

🌇 材料			
登録 材料モデル 削除 非対称パイニリア(移動硬(上則)	材料番号 1 コメント SM490 横せん断係数 77000000. 比重量 0	 リスト登録 リスト削除 	
₽[1] SM490			σyp 315000. \$ yp 1.575E-3 σym 252000. \$ ym 1.26E-3 Hp 2000000. Hm 2000000. Hm 200000 Hm 200000

各パラメータは、以下の通りです.

σ yp=引張側降伏応力	ε yp=引張側降伏ひずみ
σym=圧縮側降伏応力	ε ym=圧縮側降伏ひずみ
Hp=引張側2次勾配	Hm=圧縮側2次勾配

【非線形弾性(非対称)】

🎬 材料				
登録 材料モデル 削除 非線形弾性(非対称)	材料番号 1 コメント 横せん断係数 77000000.	SM490 ▼ 比重量 0	リスト登録 リスト削除	
<u>⊀</u> [1] SM490				σ'yp [315000. \$ yp [1.575E-3] σ'ym [252000. \$ ym [126E-3] Hp [2000000. Hm [20000. Hm [20000. [30000. [30000.

各パラメータは、以下の通りです.

σyp=引張側降伏応力	ε yp=引張側降伏ひずみ
σ ym=圧縮側降伏応力	ε ym=圧縮側降伏ひずみ
Hp=引張側2次勾配	Hm=圧縮側2次勾配

【コンクリート (新技術小委員会)】

醫材料	
登録 材料モデル 材料番号 24 コメント σ ck=24 リスト登録 削除 コンリート(新技術小委員会) 横せん,斯係数 1086956.52 比重量 0 リスト削除	
[24] σ ck=24	圧縮側ハ [*] ラメータ σ ck 24000. ε 0 2.E-3 ε u 0.11 Edes 0 引張側ハ*ラメータ ε t0 0 ε t1 0.05 ε tu 1.

各パラメータは、以下の通りです.

 $\sigma ck = 降伏応力 \epsilon 0 = 降伏ひずみ \epsilon u = 終局ひずみ Edes = 下降勾配$ $<math>\epsilon t0 = 弾性最大引張ひずみ \epsilon t1 = 最大引張ひずみ \epsilon tu = 引張側終局ひずみ$

コンクリート圧縮側スケルトン

【コンクリート(道示V)】

▓ 材料			
登録 材料モデル 削除 コングリートG直示V)	材料番号 24 コメント コンクリート σ ck=24 横せん断係数 10869565.22 比重量 0	✓ リスト登録 リスト削除	
עלעב [24] אסck=24		1ングリードヤング率 Ec 2500000 1ングリート設計基準強度 σck 24000 横拘束筋の降低 σsy 345000 横拘束筋の間隔 S 0.3 横拘束筋の有効長 d 0.75 断面補正係数 ロ ロ ア ボック1 ・ かけ ² I ・ かけ ² I ・ かけ ² I ・ かけ ² I ・ たい 1 ・ ・ たい 1 ・ ・ ・	

各パラメータは,以下の通りです.

Ec=コンクリートヤング率 σck=コンクリート設計基準強度 σsy=横拘束筋の降伏点 Ah=横拘束筋の断面積 S=横拘束筋の間隔 d=横拘束筋の有効長 εcu=終局ひずみ εt0=弾性最大引張ひずみ εt1=最大引張ひずみ εtu=引張側終局ひずみ 断面補正係数:円形断面の場合 α=1.0 β =1.0 矩形断面,中空円形断面及び中空矩形断面の場合 α=0.2 β =0.4

$$\sigma_{c} = \sigma_{ck} + 3.8\alpha\rho_{s}\sigma_{sy}$$

$$\sigma = \sigma_{c} - E_{des}(\varepsilon - \varepsilon_{c})$$

$$\varepsilon_{c} = 0.002 + 0.033\beta \frac{\rho_{s}\sigma_{sy}}{\sigma_{sy}}$$

$$n = \frac{E_{c}\varepsilon_{c}}{E_{c}\varepsilon_{c} - \sigma_{c}}$$

$$\rho_{s} = \frac{4A_{h}}{sd} \le 0.018$$

$$E_{des} = 11.2 \frac{\sigma_{ck}^{2}}{\rho_{s}\sigma_{sy}}$$

3. 追加された「特性」の入力

【円形断面】

円形断面の入力ができます. (例:外径 1.5m, 板厚 0.025m の円形断面)

銅製	円形断面作成がつ	7በታ*		
_一 円 [;]	¥			
	直径(板厚中心)	1.475	板厚 0.025	
	リフ数 🛛		基準角 0	
	高さ 0		板厚 0	
 充:	填コングリート			
	🥅 コンクリートを充填す	-3	外縁部径寸法 材料 0	<u>_</u>
中,	心座標			
	Y 0	Z	0	
J	■ 作成中のモデルに	追加する	OK キャン1	zıl

ファイバーセルの分割については、"リスト"をクリックして「断面編集」で変更できます.

断面編集	
7 ¹ 17 ¹ 7 ¹	- 閉じる -
 プロッグ編集 追加 変更 削除… 要素の種類 「 0.725 θ -90 ● 直交座標 ● 値交座標 ● 極座標 ※点側座標 ※点側座標 * 「 0.75 θ 90 * 中心位置 z 	0

リブの作成もできます.

鋼製円形断面作成ダイアログ 🛛 🛛 🗙
円管 直径(板厚中心) 1.475 板厚 0.025
リフ数 16 基準角 0
高さ 0.1 板厚 0.02
- 充填コンツート
中心座標
Y 0 Z 0
□ 作成中のモデルに追加する OK キャンセル

充填コンクリート断面も作成できます.

鋼製円形断面作成ダイアログ	
円管 直径(板厚中心) <u>1.475</u> 板駅	₽ 0.025
リフ数 0 基準角	0
高さの板厚	0
 外縁部径 ▼ コン別ートを充填する 0.3 	寸法 材料 [30]:σck=30
Y 0 Z 0	
□ 作成中のモデルに追加する	OK キャンセル

【RC 断面】

醫 特性	
All ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	

"リスト"をクリックして断面編集"ブロック要素"でコンクリートの定義をします.

"鉄筋要素"で鉄筋の定義をします.

直交座標,極座標の座標系は以下の通りです.

