トラス橋の解析手順

ダウンロードした解析例のデータを用いて、トラス橋(3径間連続上路式トラス橋)の解 析ができます.その手順を、これから示していきます.

- 1. 死荷重解析(静的解析)の実行
- メイン画面からプリプロセッサをクリックして EERC/Fiber を起動し, 解析例のデータのファイル(truss3s.fem)を読み込む.このデータは, 修正する必要がなく, そのまま解析できる.

② 解析条件→静的解析→コントロールをクリック.

1) - s.fem								
771⊮(<u>F</u>)	編集(<u>E</u>)	入力。	データ	7(I) 解析条件(<u>A)</u> 構造図(T)	9425*9	(<u>W</u>) ∿⊮7°(<u>H</u>)	
0 🗳		χ 🗈	ß	? 静的	解析	•	コントロール(9	5)
			_	固有	値解析(M)	~	/ 荷重ケース(L)	
				重加的	解析(D)	- E		
				2003		_		
ſ	HRC an 1	-						
	/ther 則二	(-		
	_	節点著	纾	X 座標	Y座和		2 座標	_
		10	010	0.0000	100 4.1	200000	4.500000	
	2	2 10	020	0.9375	500 4.5	200000	4.500000	
	3	3 10	030	1.8750	100 4.1	200000	4.500000	
	4	1 10	040	2.8125	500 4.3	200000	4.500000	
	5	5 10	050	3.7500	100 4.3	200000	4.500000	1
	6	6 10	060	4.6875	500 4.3	200000	4.500000	I
	1	10	070	5.6250	100 4.1	200000	4.500000	Ī
	8	8 10	080	6.5625	i00 4.:	200000	4.500000	Ī
	9	8 10	090	7.5000	100 4.1	200000	4.500000	
	10	0 10	100	8.4375	i00 4.:	200000	4.500000	
	11	10	110	9.3750	100 4.1	200000	4.500000	
	12	2 10	120	10.3125	i00 4.1	200000	4.500000	
	13	3 10	130	11.2500	100 4.1	200000	4.500000	
	14	1 10	140	12.1875	500 4.5	200000	4.500000	
	15	5 10	150	13.1250	100 4.1	200000	4.500000	
	16	6 10	160	14.0625	500 4.5	200000	4.500000	

③ 「解析データを保存して閉じる」をクリックし、プログラムを終了する.

解析ナーダを採得して閉じる	5 ++>tul				
解析\$17°					
○ 材料非線形のみ					
○ 材料非線形+幾何学的非線形(Kn)				
● 材料非線形+幾何学的非線形(Kn+Kσ)					
収束判定					
各荷重増分内での最大反復回数	16				
	0				
エネルキー変位許容誤差 told	1.				

④ メイン画面から、ソルバー→ソルバー実行をクリックすると、解析がスタートする.

EERC/Fiber -Main ファイパーモデルによる弾型性有限変位解析ソフトウェア
EERC/Fiber
空崎大学身ベンチャー企業 (株)地蔵工学研究開発センター Earthquake Engineering Research Creter Inc. All rights reserved.copyight[] 2010 2012 ZERC
ブリブロセッサ
ソルバー ソルバー東行
プアイル名用定(建動の場合不要) ポストプロセッニューキャンセル
877

⑤ 解析が終了したら, Enter を押してコマンドプロンプト画面を閉じる.
 その後, ポストプロセッサ→ポストプロセッサ実行をクリックする.

EERC/Fiber - Main	
ファイバーモデルによる弾 EERC/	塑性有限变位解析ソフトウェア 「Fiber Ver.121
** 8#7	マ学発ベンチャー企業 (株)地震工学研究開発センター Earthquake Engineering Research Center Inc. All rights reserved, ecopsight(C) 2010-2012.EERC
	プリプロセッサ
	シルバー
71	ストーゴローセー・4+ ポストプロセッサ実行 ファイル名用を(運動の得合不要) キャンセル

⑥ ポストを起動したら、結果表示→図をクリックする.

W FemPost - s.ind.in	a second		
ファイル(F) 編集(E) 結	果表示(V) 9ィンド9(W)	∿l⁄7°(H)	
□ ☞ ? [解析結果情報		
Fem	ሀ አ ኑ(L)		
抽出 範囲指	図(F)		•
1000 +00018	/ ን ን7(G)		
_			

⑦ 支間中央の変位を確認してみよう.

「抽出」をクリックし、節点番号 300900 を抽出する.

19年7 - [1911年7 合称 - 「男王立体 を参考	
1.1.59/5-60,25/5:86@IN\\$D	
111. Hattart 601	
A目 種類 2月77 ¹ (X)	
○ <u>東公</u> ○ 用(回称点力) ○ 成素通 用点量表 [100160] ■ <u>4√26</u>	
((111)) (11) (11) (11) (11) (11) (11)	
1023(8-992)	
2469	
13 ×	

⑧ 結果表示→グラフをクリックする.

枞 FemPost - s.ind.in	States and States of Strend to
ファイル(E) 編集(E) 結果表示(⊻) ワィンドワ(₩) /	∿17° (<u>H</u>)
□ □ □ □ □ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	
Form リスト(L) 1抽出<	.
 ▽ 節点 □ 断面形状 □ 節点番号 □ 特性番号 ▽ 要素 □ 要素座標 □ 要素番号 □ 拘束 節点指定 (1.3,55)2-6のように範囲指定) 変位倍率 □ 10. ○ 荷重倍率 0.01 □ 「 値を表示する <u>指出</u> □ 応答変位(節点番号=300900) 	

⑨ 死荷重時支間中央鉛直変位は以下の通りである.

⑩ 死荷重の変形図を見てみよう.

「抽出」をクリックし、ステップ10を抽出する.

⑪ 変形倍率 100 倍時の変形図は以下の通りである.

図の中でカーソルをドラッグアンドドロップして図をアクティブにし, Enter すること で側面図へ切り替えができる.

- 2. 固有振動解析(固有値解析)の実行
- ① メイン画面からプリプロセッサをクリックして EERC/Fiber を起動し,ファイル (truss3m.fem)を読み込む.

	プリ - 新規	
🗱 EERC/Fiber -Main	ファイル(F) 編集(E) 入力データ(I) 解析条件(A) 構造図(T) ワィンドワ(W) ヘルプ(H)	
ファイバーモデルによる弾型性有限変位解析ソフトウェア		
EEDC/Elbox		
Ver. 1.21	巡 節点	
京師大学祭べいチャー企業 (株)地震工学研究開発センター		
Earthquake Engineering Research Center Inc. All rights reserved, copyright(C) 2010-2012.EERC		
プリプロセッサ		
シルバー	8	
▼		
ポストプロセッサ		
44.7		
	17	
	19	

② 解析条件→固有値解析をクリック.

ፓሀ - ሀ	m.fem							
7711/	F) 編集	(E) 入力5	データ(I)	解析条件	F(A) 構造図(T) 9	心ド	'୨(W) ∿⊮フ°(H)	
D	🛩 日	X 🗈	8 ?	静的	内解析	۲	1	
	固有値解析(M)							
C								
	🌋 節点				.,		J	
		節点番号	X座	標	Y 座標		Z 座標	
	1	10010	0	.000000	4.200000		4.500000	
	2	10020	0	.937500	4.200000		4.500000	
	3	10030	1	.875000	4.200000		4.500000	
	4	10040	2	.812500	4.200000		4.500000	
	5	10050	3	.750000	4.200000		4.500000	
	6	10060	4	.687500	4.200000		4.500000	
	7	10070	5	.625000	4.200000		4.500000	
	8	10080	6	.562500	4.200000		4.500000	
	q	10090	7	500000	4 200000		4 500000	

③ 「解析データを保存して閉じる」をクリックし、プログラムを終了する.

固有値解析			
	解析データを採	早して閉じる	キャンセル
	求めるモード数	50	

④ メイン画面から、ソルバー→ソルバー実行をクリックする.

⑤ 解析が終了したら, Enter を押してコマンドプロンプト画面を閉じる.
 その後, ポストプロセッサ→ポストプロセッサ実行をクリックする.

⑥ ポストを起動したら、結果表示→リストをクリックする.

TA FemPost - m.ind	d.in	
ファイル(<u>E</u>) 編集(<u>E</u>)	結果表示(V) 9ィント・9(W)	∿⊮7° (<u>H</u>)
🗅 🖻 🧣 [解析結果情報	
Fem	ሀ አ ኑ(L)	
抽出 範囲指	図(F) グラフ(G)	
 □ 節点 □ 節点 □ 節点 ■ 要素 □ 要素 □ 一 海束 □ 「 海束 □ 「 海束 □ 「 海束 □ 「 海末 □ 二 二 □ 二 □ 二 □	 「断面形状 計号 「特性番号 「要素座標 計号 	

⑦ 固有振動解析の結果を確認してみよう.

e <i>m</i>										
抽出	範囲指定 回復日	期と刺激係数			•					
€-ト*	振動数	周期	х	Y	Z	RX	RY	RZ	減衰	
1	1.444e+000	6.925e-001	-1.196e-009	3.704e+001	-1.982e-009	-1.814e-002	-2.609e-012	0.000e+000	1.516e-002	
2	1.572e+000	6.362e-001	-3.962e+001	-4.975e-010	1.657e+000	5.607e-013	-9.785e-002	0.000e+000	1.048e-002	
3	1.783e+000	5.610e-001	6.244e+000	3.359e-009	2.402e+001	-1.650e-012	1.517e-002	0.000e+000	1.059e-002	
ł.	2.885e+000	3.466e-001	2.939e-010	-2.752e-001	-1.409e-009	2.206e-004	4.530e-013	0.000e+000	1.419e-002	
	3.915e+000	2.554e-001	-1.082e-009	1.852e+001	1.421e-009	-4.399e-002	5.348e-012	0.000e+000	1.288e-002	
	3.990e+000	2.506e-001	8.124e-001	8.162e-009	6.955e-001	-1.926e-011	-1.624e-002	0.000e+000	1.048e-002	
	4.658e+000	2.147e-001	-1.689e+001	4.963e-011	4.097e-010	-2.433e-014	4.485e-013	0.000e+000	2.000e-002	
	4.658e+000	2.147e-001	1.689e+001	4.695e-011	2.167e-010	-2.300e-014	-4.630e-013	0.000e+000	2.000e-002	
	4.982e+000	2.007e-001	-2.660e-001	-1.430e-009	1.968e+001	3.627e-012	4.251e-003	0.000e+000	1.046e-002	
C	5.248e+000	1.905e-001	4.096e+000	1.118e-009	-1.680e+001	-2.999e-012	8.443e-003	0.000e+000	1.056e-002	
1	5.724e+000	1.747e-001	3.202e-010	-5.276e-002	7.333e-011	1.602e-004	7.213e-013	0.000e+000	1.331e-002	
2	6.614e+000	1.512e-001	5.293e-001	-5.488e-011	-1.241e+001	2.537e-013	9.891e-005	0.000e+000	1.052e-002	
3	8.007e+000	1.249e-001	-1.666e-001	5.320e-010	2.790e-002	-1.085e-012	2.932e-004	0.000e+000	1.004e-002	
4	8.017e+000	1.247e-001	-2.213e-002	-5.288e-010	1.919e-002	1.663e-012	-1.535e-003	0.000e+000	1.000e-002	
5	8.080e+000	1.238e-001	-5.964e-003	2.371e-011	7.672e-002	2.050e-012	1.964e-003	0.000e+000	1.000e-002	
5	8.091e+000	1.236e-001	6.834e-002	-9.999e-010	-1.232e-001	-9.496e-013	2.077e-003	0.000e+000	1.000e-002	
7	8.169e+000	1.224e-001	-1.481e-010	-3.307e+000	-4.512e-011	2.918e-002	-4.858e-013	0.000e+000	1.453e-002	
в	8.467e+000	1.181e-001	5.128e-002	-1.555e-009	-8.563e-002	-5.154e-011	2.332e-003	0.000e+000	1.000e-002	
0	9 4720 1000	1 1000 001	1 2700 002	2 6904 000	0 4140 000	1 1250 010	1 2520 002	0.0000 0000	1 0000 002	

⑧ モード図を確認してみよう.

結果表示→図をクリックする.

⑨ モード1のモード図は以下のとおりである.

- 3. 地震応答解析(動的解析)の実行
- ① メイン画面からプリプロセッサをクリックして EERC/Fiber を起動し, ファイル (truss3d.fem)を読み込む.

(注意) この解析の前に死荷重解析を終わらしておくこと.

	「リ - 新規				
ERC/Fiber -Main	ファイル(F) 編集(E) 入力データ(I) 解析条件(A) 構造図(T) ワィンドワ(W) ヘルプ(H)				
ファイバーモデルによる弾型性有限変位解析ソフトウェア					
EERC/Fiber	間<				
宮崎大学発ベンチャー企業 (株) 地震工学研究開発センター Entranal & Explored in Research Centrel Inc.	施点部号 X 座標 Y 座標 Z 座標				
▼					
シルバー					
ポストプロセッサ					
	13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
1					

② 解析条件→動的解析をクリック.

ንሀ	- d:	c.fem							
771	₩(F)編集	[(E) 入力	データ(I)	解析条件	(A) 構造図(T) 🤈	42F*9(W	/) ∿1/7°(H)	
		ê 🔒	1 K 🖻	6 ?	静的	匀解析	+ -		
	-		1		固有	頁値解析(M)			
					動的解析(D)				
	^H	🎬 節点					_		
			節点番号	X 座	標	Y 座標	Z	座標	
		1	10010	0	.000000	4.200000		4.500000	
		2	10020	0	.937500	4.200000		4.500000	
		3	10030	1	.875000	4.200000		4.500000	
	ΙГ	4	10040	2	.812500	4.200000		4.500000	
		5	10050	3	.750000	4.200000		4.500000	
		6	10060	4	.687500	4.200000		4.500000	
		7	10070	5	.625000	4.200000		4.500000	
		8	10080	6	.562500	4.200000		4.500000	
		9	10090	7	.500000	4.200000		4.500000	
		10	10100	8	.437500	4.200000		4.500000	
		11	10110	9	.375000	4.200000		4.500000	
		12	10120	10	.312500	4.200000		4.500000	
	-								

③ 「解析データを保存して閉じる」をクリックし、プログラムを終了する.

协的解析					
解析データを保存して閉	lua trivell				
解析如?~					
○ 材料非線形のみ					
○ 材料非線形+幾何学的非線形(Kn)					
収東判定					
各ステップでの最大反復回数	200				
Iネルキー荷重許容誤差 tolp	0				
荷重許容誤差 tolp2	0				
時間積分					
ステップ "数	4000				
解析開始時間	0				
解析終了時間	40				
ファイル書出しのステップ間隔	2				
L					

④ メイン画面から、ソルバー→ソルバー実行をクリックする.

⑤ 解析が終了したら、Enter を押してコマンドプロンプト画面を閉じる.
 その後、ポストプロセッサ→ポストプロセッサ実行をクリックする.

⑥ ポストを起動したら、結果表示→図をクリックする.

🕅 FemPost - s.ind.in	A 1000	
ファイル(F) 編集(E) 結	果表示(V) 9インド9(W)	∧⊮7° (H)
D 🛎 🤋 [解析結果情報	
Fem	ሀአኑ(L)	
11月1日 第二日1日	⊠(F)	
10000 #02018	/	
		1

⑦ 支間中央の変位を確認してみよう.

「抽出」をクリックし、節点番号 300900 を抽出する.

0.6
No.
第日 第日

⑧ 結果表示→グラフをクリックする.

🕻 FemPost - s.ind.i	in	States and States of Strength in
ファイル(E) 編集(E) 🗄	結果表示(<u>V)</u> ウィンドウ(<u>W</u>)	∿17° (<u>H</u>)
D 🗃 💡 [解析結果情報	
Ferri 抽出 範囲指	¹ Jλト(L) ⊠(F) 0° 57(G)	
 ▶ 印息 □ 節点番 ▼ 要素 □ 要素 □ 一 拘束 節点指定 要素指定 	町1000747 号 □ 特性番号 □ 要索座標 号	
(). 変位倍率 「 値を 抽出 「応答変位(0.00/2-000よりに範囲指定) 10. 荷重倍率 0.01 表示する 節点番号=300900)	

⑨ 支間中央橋軸方向変位は以下の通りである.

⑩ 固定支承の反力を確認してみよう.

「抽出」をクリックし、要素番号 204030 を抽出する.

⑪ 固定支承の水平反力は以下の通りである.

12 見たい結果を直接抽出してみよう.

「図」を表示させ、Shiftを押しながら見たい範囲をドロップすると拡大表示ができる.

 13 P1 橋脚基部の断面力を抽出してみよう.
 基部の要素にカーソルを合わせて右クリックすると、断面力抽出タブが出てくるので、 クリックして抽出する.

⑭ P1 橋脚基部の軸力は以下のとおりである.

- 4. ViewerPost の実行
- ① ViewerPost で地震応答解析の結果を見てみよう.

ViewerPost.exe を起動し,ファイル→開くでファイル(truss3d.ind.in)を読み込む.

ViewerPostprocessor		
ファイル(F) 表示(V) と	ヘルプ(H)	
鬧<	Ctrl+O(<u>0</u>)	
アプリケーションの#		
increase de milit		away (
以仔のノアイルを騙く		NUM 2

② 支間中央(節点番号 300900) 最大変位である 2.04 秒の変形図を見てみよう.
 表示→変形図をクリックする.

③ ステップの選択で、2.04 秒を選択しOKをクリックする.

変位図 🗾 🗾	
ステップの選択 へ 2.049 ▼ 変形倍率 50.000000	

④ ビューで側面図に切り替えたり、ドラッグして目線を変更してみよう.

- A: WeekPerturbaseser doubling
 Image: Control of the second second
- ⑤ 応力分布やひずみ分布に切り替えて結果を確認してみよう.

⑥ 2.04 秒の応力分布は以下の通り.

以上で、トラス橋を用いた解析手順の説明は終了です。今度は、このデータを自分で修 正して、いろいろと体験してみてください.